13,391 research outputs found

    The holographic RG flow in a field theory on a curved background

    Get PDF
    As shown by Freedman, Gubser, Pilch and Warner, the RG flow in N=4{\cal N}=4 super-Yang-Mills theory broken to an N=1{\cal N}=1 theory by the addition of a mass term can be described in terms of a supersymmetric domain wall solution in five-dimensional N=8{\cal N}=8 gauged supergravity. The FGPW flow is an example of a holographic RG flow in a field theory on a flat background. Here we put the field theory studied by Freedman, Gubser, Pilch and Warner on a curved AdS4AdS_4 background, and we construct the supersymmetric domain wall solution which describes the RG flow in this field theory. This solution is a curved (non Ricci flat) domain wall solution. This example demonstrates that holographic RG flows in supersymmetric field theories on a curved AdS4AdS_4 background can be described in terms of curved supersymmetric domain wall solutions.Comment: 14 pages, LaTe

    Nernst branes from special geometry

    Get PDF
    We construct new black brane solutions in U(1)U(1) gauged N=2{\cal N}=2 supergravity with a general cubic prepotential, which have entropy density sT1/3s\sim T^{1/3} as T0T \rightarrow 0 and thus satisfy the Nernst Law. By using the real formulation of special geometry, we are able to obtain analytical solutions in closed form as functions of two parameters, the temperature TT and the chemical potential μ\mu. Our solutions interpolate between hyperscaling violating Lifshitz geometries with (z,θ)=(0,2)(z,\theta)=(0,2) at the horizon and (z,θ)=(1,1)(z,\theta)=(1,-1) at infinity. In the zero temperature limit, where the entropy density goes to zero, we recover the extremal Nernst branes of Barisch et al, and the parameters of the near horizon geometry change to (z,θ)=(3,1)(z,\theta)=(3,1).Comment: 37 pages. v2: numerical pre-factors of scalar fields q_A corrected in Section 3. No changes to conclusions. References adde

    Eccentric binary black-hole mergers: The transition from inspiral to plunge in general relativity

    Full text link
    We study the transition from inspiral to plunge in general relativity by computing gravitational waveforms of non-spinning, equal-mass black-hole binaries. We consider three sequences of simulations, starting with a quasi-circular inspiral completing 1.5, 2.3 and 9.6 orbits, respectively, prior to coalescence of the holes. For each sequence, the binding energy of the system is kept constant and the orbital angular momentum is progressively reduced, producing orbits of increasing eccentricity and eventually a head-on collision. We analyze in detail the radiation of energy and angular momentum in gravitational waves, the contribution of different multipolar components and the final spin of the remnant. We find that the motion transitions from inspiral to plunge when the orbital angular momentum L=L_crit is about 0.8M^2. For L<L_crit the radiated energy drops very rapidly. Orbits with L of about L_crit produce our largest dimensionless Kerr parameter for the remnant, j=J/M^2=0.724. Generalizing a model recently proposed by Buonanno, Kidder and Lehner to eccentric binaries, we conjecture that (1) j=0.724 is the maximal Kerr parameter that can be obtained by any merger of non-spinning holes, and (2) no binary merger (even if the binary members are extremal Kerr black holes with spins aligned to the orbital angular momentum, and the inspiral is highly eccentric) can violate the cosmic censorship conjecture.Comment: Added sequence of long inspirals to the study. To match published versio

    The pros and cons of using SDL for creation of distributed services

    Get PDF
    In a competitive market for the creation of complex distributed services, time to market, development cost, maintenance and flexibility are key issues. Optimizing the development process is very much a matter of optimizing the technologies used during service creation. This paper reports on the experience gained in the Service Creation projects SCREEN and TOSCA on use of the language SDL for efficient service creation

    Localization properties of a tight-binding electronic model on the Apollonian network

    Get PDF
    An investigation on the properties of electronic states of a tight-binding Hamiltonian on the Apollonian network is presented. This structure, which is defined based on the Apollonian packing problem, has been explored both as a complex network, and as a substrate, on the top of which physical models can defined. The Schrodinger equation of the model, which includes only nearest neighbor interactions, is written in a matrix formulation. In the uniform case, the resulting Hamiltonian is proportional to the adjacency matrix of the Apollonian network. The characterization of the electronic eigenstates is based on the properties of the spectrum, which is characterized by a very large degeneracy. The 2π/32\pi /3 rotation symmetry of the network and large number of equivalent sites are reflected in all eigenstates, which are classified according to their parity. Extended and localized states are identified by evaluating the participation rate. Results for other two non-uniform models on the Apollonian network are also presented. In one case, interaction is considered to be dependent of the node degree, while in the other one, random on-site energies are considered.Comment: 7pages, 7 figure

    Número de aplicações de metalaxyl + mancozeb para o controle do míldio-do-meloeiro.

    Get PDF
    Este trabalho teve o objetivo de determinar o numero de aplicacoes do fungicida metalaxyl + mancozeb, suficiente para o controle do mildio.bitstream/CNPAT-2010/8611/1/Ct-092.pd

    Recomendações técnicas para o cultivo do milho no Meio-Norte do Brasil: safra 2003/2004.

    Get PDF
    bitstream/item/131490/1/Circular-39-Recomendacoes-Tecnicas-para-o-Cultivo-do-milho.PD
    corecore